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Abstract

Infrared (IR) irradiation is frequently used in ophthalmological diagnosis and treatment. It has been used to selectively stimulate
photodiode-based retinal prostheses to prove their function. Data concerning the natural IR-sensitivity of the retina are contradic-
tory. In our experiments in dark-adapted cats an IR-laser (826 nm) and IR emitting diodes (875 nm) elicited clear scotopic threshold
responses. Comparison of the two lasers (IR and a visible laser at 670 nm) using Lambs template and our experimental data revealed
very similar differences in retinal sensitivity (4.28 and 3.94 ± 0.29 log units, respectively). The fact that the cat retina is sensitive to
IR-irradiation under certain conditions has important implications in interpreting the results from retinal prostheses and rewards
further attention in its use in many ophthalmological applications.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the expanding field of retinal prostheses (Chow &
Chow, 1997; Chow et al., 2004; Chow, Packo, Pollack,
& Schuchard, 2003; Chow & Peachey, 1998; Gekeler,
Schwahn, Stett, Kohler, & Zrenner, 2001; Hesse,
Schanze, Wilms, & Eger, 2000; Humayun, 2001; Huma-
yun, Sato, Propst, & de Juan, 1995; Kohler, Hartmann,
Werts, & Zrenner, 2001; Laube et al., 2003; Pardue
et al., 2001b; Rizzo, Loewenstein, & Wyatt, 1999; Rizzo
et al., 2001; Schanze, Wilms, Eger, Hesse, & Eckhorn,
2002; Schwahn et al., 2001a; Stett, Barth, Weiss, Haem-
merle, & Zrenner, 2000, 2002; Zrenner et al., 1997) infra-
red (IR) irradiation has been used to selectively
stimulate retinal prostheses under the assumption that
silicon-based implants using photodiodes are inherently
sensitive for IR-wavelengths whereas the retina is not
(Chow et al., 2001, 2002; Gekeler et al., 2001; Laube
et al., 2004; Pardue et al., 2001b; Peyman et al., 1998;
0042-6989/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.visres.2005.06.023
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Schwahn, Gekeler, Kohler, & Zrenner, 2001b; Zrenner,
2002). It is essential to establish a proper way of testing
retinal prostheses to ascertain beyond doubt that any
measured biological response is mediated by the implant
and does not stem from direct stimulation of retinal
cells. Since the cat is the most widely used and under-
stood animal in respect to the visual system many
groups have performed studies in these animals (Chow
et al., 2001; Hesse et al., 2000; Pardue et al., 2001b;
Sachs & Gabel, 2004; Schwahn et al., 2001b).

IR-irradiation is also widely used in diagnosis and
treatment of ocular disease, e.g., IR emitting diodes
(IREDs) or lasers are used in optical coherence
tomography (OCT), retinal photocoagulation, indocy-
anine green angiography, transpupillary thermothera-
py, in many common autorefractors, and in
continuous fundus visualization during stimulation in
focal macular electroretinography (Miyake & Awaya,
1984) and in the scanning laser ophthalmoscope (See-
liger & Narfstrom, 2000; Seeliger, Narfstrom, Rein-
hard, Zrenner, & Sutter, 2000).

There has been, however, considerable debate about
the natural sensitivity of the mammalian retina to
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IR-irradiation (Chan, Freeman, & Cleland, 1992;
Guenther & Zrenner, 1993; He & Loop, 1992; Jacobs
& Neitz, 1986; Nelson, 1985; Ringo, Wolbarsht,
Wagner, Crocker, & Amthor, 1977). Pardue et al.
(2001a) have published a report which intends to dem-
onstrate that the cat retina is sensitive to IR-irradiation
by using IREDs. IREDs emit light in a wider wave-
length range which is described by their half-bandwidth
and therefore could stimulate the retina with the visible
part of their irradiation spectrum. This prompted us to
investigate in more detail the cat retina�s sensitivity to
IR-irradiation by using monochromatic lasers. Clear
responses to IR-irradiation near the absolute threshold
of vision will be shown and discussed in relation to
previous reports.
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Fig. 1. Spectral sensitivity of the cat�s photoreceptor pigments
(Guenther & Zrenner, 1993) in relation to the spectral distribution of
the infrared emitting diodes (IREDs) and the two lasers used in this
study. The sensitivity shift between the two laser sources used in this
study has been calculated for the rod photoreceptor pigments (any
response to IR-irradiation was abolished in the light-adapted state)
and yields 4.28 logarithmic units. While laser irradiation is mono-
chromatic the spectrum of IREDs [in this and a previous study (Pardue
et al., 2001a)] is broad and overlaps in a wide range with all
photoreceptor pigments.
2. Materials and methods

2.1. Animals

Three healthy adult cats were included in the study.
After intramuscular anesthesia with ketamine (15 mg/
kg) and xylazine (1 mg/kg) the animals were placed in
a modified stereotactic apparatus in front of the stimu-
lation device with dilated pupils. Experiments were
either performed in the dark-adapted state after keeping
the animals in complete darkness for 60 min or in the
light-adapted state with a diffuse background from
room illumination (approximately 2000 lx; measured
with an IL 1700, international light, Newburyport, Mas-
sachussetts, USA). All experiments adhered to the
ARVO statement for the Use of Animals in Ophthalmic
and Vision Research and the local commission for ani-
mal welfare.

2.2. Irradiation sources

Three different irradiation sources were used in the
study:

1. An IR-laser, peak wavelength k = 826.4 nm (made by
Power Technology, Mabelvale, Arizona, USA, dis-
tributed by Laser 2000 GmbH, Wessling, Germany;
model number PPMT125(830-150)D2G3). Maximum
Corneal irradiation was 23.0 mW (measured with a
LaserMate-Q by Coherent, Santa Clara, California,
USA).

2. Infrared emitting diodes, peak wavelength
kpeak = 875 nm, half bandwidth khalf = 37 nm
(HSDL-4230 by Agilent Technologies, Böblingen,
Germany). Four diodes were glued together and elec-
trically connected in series. The IREDs were posi-
tioned directly in front of the eye for stimulation
and driven by 10 V. IREDs produced a corneal irra-
diation of 0.01 mW.
3. A red, visible laser, peak wavelength k = 670 nm (by
Laser 2000, Wessling, Germany; model number ILE-
LDA 1010-1mW-M). Maximum corneal irradiation
was 0.2 mW.

The spectral distribution of the irradiation sources
and the sensitivity of the cat�s photoreceptor pigments
are given in Fig. 1. Irradiation sources were used in
the above order first in the dark-adapted state and after
10 min of light-adaptation in the light-adapted state.

2.3. Stimulating setup

The IR-laser and the visible laser were mounted on
the side of the chassis of a fundus camera for human
use (Olympus, Hamburg, Germany; model type GRC-
W) and were aligned by using a band-pass filter/mirror
(Melles Griot, Bensheim, Germany). Therefore, the vis-
ible laser could also be used as a pilot laser for the IR
laser. By changeable mirrors the beam could be adjusted
to fall completely into the open pupil of the animal. The
irradiation fell through a slightly diffusing corneal con-
tact lens electrode. The diameter of the illuminating cir-
cle on the back of the eye was tested with both laser
types and the IREDs in an artificial eye (for the IR
sources an IR-sensitive digital video camera was used).
It was found to be larger than 3 cm and covering the en-
tire posterior pole. The intensity of the lasers was mod-
ified by mounting different neutral density filters (Melles
Griot, Bensheim, Germany) or a combination thereof
into the optical path. In a first preliminary series
D 5.7, D 4.7, D 4, D 3, D 1.7, D 1.3, D 1, D 0.7,
D 0.3, and no filter were used starting from the higher



F. Gekeler et al. / Vision Research xxx (2005) xxx–xxx 3

ARTICLE IN PRESS
densities. The experimental series, however, was started
only about two steps below the threshold found in the
preliminary series. The corneal irradiation was:
0.0023 mW (D 4 filter), 0.023 mW (D 3), 0.459 mW
(D 1.7), 2.3 mW (D 1), 4.59 mW (D 0.7), 11.53 mW
(D 0.3), and 23 mW (no filter) for the IR laser. For
the visible laser it was 0.0002 mW (D3 filter),
0.002 mW (D 2), 0.004 mW (D 1.7), 0.02 mW (D 1),
0.04 mW (D 0.7), 0.1 mW (D 0.3), and 0.2 mW (no fil-
ter). The contact lens electrode did not filter out radia-
tion in significant amounts (less than 5%). Irradiation
sources were thus used as a variation of a Maxwellian
viewing system and all energy on the cornea fell com-
pletely through the pupil into the eye. Lasers and IREDs
were triggered by a function generator (MCS STG 1008
by Multichannel Sytems, Reutlingen, Germany). Stimu-
lating frequency was 0.87 Hz (inter-stimulus inter-
val = 1540 ms; to reduce noise from 50 Hz-ground
after averaging) with a pulse length of 4 ms for the lasers
(based on the ISCEV standard; www.iscev.org) and
0.85 ms for the IREDs.

2.4. Electrophysiological recordings

Surface electroretinograms (ERGs) were recorded
with a gold-ring contact lens electrode (ERGJet, Univer-
so, La Chaux-de-Fonds, Switzerland) on the cornea as
active electrode. One subcutaneously placed needle near
the lateral canthus served as negative electrode, one nee-
dle in the midline on the scull as reference electrode.

For all recordings an ESPION Console (Diagnosys
LLC, Littleton, MA, USA) was used. Data were stored
on the hard disk for offline analysis. Bandpass filter set-
tings were 0.03 Hz as low and 300 Hz as high cut-off
frequency.
Fig. 2. Corneal electroretinograms in response to IR-laser (826 nm) and IRE
in one representative cat. A clear response can be observed from the IR-lase
50 ms. The amplitude of the trough increased with further increasing irradia
IREDs. The responses are scotopic threshold responses known from visible
3. Results

3.1. Dark-adapted state

The IR-laser elicited a clearly discernible negative re-
sponse starting at a corneal irradiation of 0.46 mW.
Fig. 2 shows the results from one representative cat. A
trough of increasing amplitude was observed starting
at around 50 ms and returning to baseline at around
400 ms. Starting at 0.46 mW amplitude increased with
increasing stimulus intensity from 4 ± 1, to 9 ± 4,
11 ± 7, 13 ± 9, and 18 ± 10 lV, respectively (values
are given as average of three cats ± standard deviation).
Implicit time decreased from 173 ± 6 to 149 ± 20,
125 ± 3, 129 ± 8, and 124 ± 7 ms. At 23 mW a small ele-
vation appeared at approximately 50 ms.

The IREDs also elicited a clearly discernible negative
response. The course of the trough followed the one de-
scribed for the IR-laser with an implicit time of
140 ± 26 ms and an amplitude of 15 ± 5 lV (Fig. 2).

The visible laser elicited a clearly discernible negative
response starting at 0.0002 mW with a trough of
9 ± 4 lV at 147 ± 15 ms (values are given as average
from three cats ± standard deviation). Fig. 3 shows
the results of one representative cat. At 0.004 mW the
trough measured 20 ± 13 lV at 139 ± 11 ms. The
trough thus first increased in amplitude and then de-
creased with all consecutive steps. At 0.02 mW two dis-
tinct positive components started to form on top of the
trough at around 40 ms and at around 85 ms. Both
peaks steadily increased in amplitude with increasing
stimulus intensity to reach a maximum of 13 ± 4 and
76 ± 27 lV, respectively. Implicit time of the trough
was around 120 ms but its amplitude cannot be
D (peak wavelength 875 nm) stimulation after 60 min dark-adaptation
r starting at a corneal irradiation of 2.3 mW with a trough at around
tion levels. A similar response was found following illumination with
light.

http://www.iscev.org


Fig. 3. Corneal electroretinograms in response to a visible laser (670 nm) after 60 min dark-adaptation in one representative cat. The visible laser
elicited a scotopic threshold response (STR) with the typical trough starting at a corneal irradiation level of 0.0002 mW. With increasing amplitude
the trough of the STR was overlaid by two positive peaks which are cone and rod b-waves; the first appearing at around 40 ms, the latter at around
90 ms.
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measured meaningfully at higher stimulus intensity due
to the overlying strong positive components.

To compare the sensitivity of the cat retina for the IR
laser and the visible laser intensity–response functions
were calculated in all three cats (Fig. 4). The sensitivity
shift has been calculated at intensity levels of 0.15, 0.30,
and 0.45. The comparison intensities were chosen in
such a way that they would lie within the range of
expected linearity of the intensity–response functions
and within the range for which data from all three cats
were available (eight out of nine values could be calcu-
lated). The values are summarized in Table 1. The aver-
age sensitivity shift for all intensity levels of all three cats
was 3.94 ± 0.29 logarithmic units.

3.2. Light-adapted state

Neither the IR-laser nor the IREDs elicited discern-
ible responses in the light-adapted state at their respec-
tive highest stimulation strengths (Fig. 5).

The visible laser elicited a clearly discernible response
starting at a corneal irradiation of 0.2 mW with a posi-
tive peak of 5 ± 2 lV at 23 ms followed by a trough at
around 100 ms; although a response can be anticipated
at lower irradiation levels, possibly starting at 0.1 mW
(Fig. 5).
4. Discussion

The ERG response to stimulation from the IR-laser in
the dark-adapted condition with a trough appearing near
the threshold of vision and an increasing amplitude with
increasing stimulus intensity (Fig. 2) resembles the re-
sponse which has been defined by many investigators as
the scotopic threshold response (STR) (Finkelstein, Gou-
ras, & Hoff, 1968; Frishman, Sieving, & Steinberg, 1988;
Sieving, Frishman, & Steinberg, 1986b; Sieving & Nino,
1988). They have described the response as occurring
near the absolute threshold of vision as a negative trough
with a latency of roughly 50 ms and an implicit time of
120 ms. Originally, STRs were recorded in cats in re-
sponse to long stimuli of 250 ms (Sieving, Frishman, &
Steinberg, 1986a, 1986b). However, it is known from hu-
mans that it is possible to record STRs with 10 ls-flashes
(Sieving & Nino, 1988), much shorter than the 4 ms used
in our study. The similar wave-form and time course in
the response to the IREDs (Fig. 2) also represents a STR.

The visible laser elicited a more complex waveform
which also commenced near the absolute threshold of vi-
sion as a STR (Fig. 3). It has been described previously
by e.g., Finkelstein et al. (1968) that the amplitude of the
STR first rises with increasing stimulus intensity to later
disappear or give rise to an overlying b-wave. In our
study (Fig. 3), starting at 0.02 mW, the development
of two positive waves appearing on top of the trough
was observed. From its implicit time the first positive
peak appearing at around 40 ms represents the cone b-
wave, whereas the second one at around 85 ms repre-
sents the rod-b-wave. It is known that under certain irra-
diation conditions it is possible to record b-waves of
rods and cones simultaneously, especially for light near
the red end of the spectrum (Kawasaki, Tsuchida, &
Jacobson, 1971; Motokawa & Mita, 1942).



Fig. 4. Intensity–response functions of the IR-laser and the visible laser of all three cats in the dark-adapted state (logarithmic representation). Data
were normalized to the maximum response of each individual cat. The shift in sensitivity between the two laser sources has been calculated
individually at three levels: 0.15, 0.30, and 0.45 (fine dashed lines) in the range of expected linearity of the intensity–response functions. The average
difference of 3.94 ± 0.29 is in good accordance with the expected, theoretical value of 4.28 of Lamb�s template.

Table 1
Sensitivity shifts from the visible to the IR laser in three individual cats

Normalized amplitude Shift from visible laser to IR-laser in log units

Cat1 Cat2 Cat3

0.15 3.40 4.05 4.40
0.30 4.05 3.93 4.10
0.45 3.60 4.00 n/a

Average of all values ± SD: 3.94 ± 0.29. Amplitudes of the scotopic
threshold response (STR) were normalized to the maximum amplitude
in each cat and shifts were calculated from interpolated original points
at three levels (0.15, 0.30, and 0.45) within the range of expected
linearity.
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It is concluded that all responses to the IR-laser, the
IREDs, and the visible laser in the dark-adapted state
represent true ERGs and do not reflect direct, inade-
quate excitation of retinal neurons by heat (no matter
which cell type) because, first any response disappeared
in the light-adapted state, and second the implicit time is
too long to reflect direct excitation by heat. Other pig-
ments and photosensitive cells could be expected to be
stimulated by the IR-irradiation, e.g., melanopsin which
is known to be present in retinal ganglion cells to mod-
ulate circadian rhythms and provide non-rod, non-cone
photoreception (Foster et al., 2003; Sekaran, Foster, Lu-
cas, & Hankins, 2003; Sollars et al., 2003). Melanopsin,
however, absorbs maximally near the blue end of the
spectrum (Newman, Walker, Brown, Cronin, & Robin-
son, 2003) and is therefore unlikely to produce a STR at
826 nm. In addition, it has not been possible to demon-
strate electrophysiological results from melanopsin con-
taining cells.

In the light-adapted state only the visible laser elicited
a clear response at 0.2 mW with a small b-wave (Fig. 5).
At 0.1 mW the typical trough of a b-wave can only be
anticipated. In contrast, neither the IR-laser nor the IR-
EDs elicited a discernible response at their respective
highest stimulation strengths. This finding is consistent
with the findings of Pardue et al., 2001a who have
reported that any response to IREDs was abolished by
dim light. The ERG response which could be recorded
to the IR-laser and the IREDs in the dark-adapted state
stems from the rod system and is accordingly suppressed
in the light-adapted state because of the shift in sensitiv-
ity in the light-adapted retina.

Using the template of Lamb Lamb (1995) the sensi-
tivity for the cat�s rods (maximum at 501 nm) was calcu-
lated to be 9.41 · 10�5 at 670 nm (visible laser) and
4.86 · 10�9 at 826 nm (IR laser). The theoretical differ-
ence therefore in sensitivity between the two light sourc-
es is approximately 4.28 log units. The average
sensitivity shift in the cats of this study was



Fig. 5. Corneal electroretinograms in response to IREDs, IR-laser, and visible laser in the light-adapted state. Only the visible laser elicited a
discernible response starting at corneal irradiation of 0.1 mW with a typical cone b-wave. The IR-laser and the IREDs did not elicit any discernible
response in the light-adapted state.
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3.94 ± 0.29 (calculated from Fig. 4 in Table 1) and cor-
responds well to the fit of Lamb Lamb (1995). While it is
generally assumed that the STR stems from a rod re-
sponse, it has been argued that cones might be involved
(Sieving & Nino, 1988). The values of the sensitivity
shift for the S-, M-, and L-cones calculates to be 3.86,
4.32, 4.60 logarithmic units, respectively, and also com-
pares well to the value found in our study. The accor-
dance of our value with the theoretical value adds
experimental, electrophysiological proof for Lamb�s
template in the IR region. Accordingly, irradiation in
the deep IR region produced not only undefined retinal
response but well-described STRs of quasi identical
form as from visible light, but also—when adjusted to
the theoretical difference in sensitivity (approximately
4 logarithmic units)—of similar amplitude. This might
suggest that also other features of the ERG such as b-
wave will be measurable from IR-laser irradiation with
higher irradiation power. However, intensity of the
IR-laser in our case was limited to a corneal irradiation
of 23 mW.

For retinal prostheses it is mandatory to prove their
function, first in laboratory animals and also later in hu-
mans. In light-sensitive prostheses based on silicon, or
more specifically in subretinal implants with photodi-
odes, use of IR-irradiation has been a way of selectively
stimulating the implants which are inherently sensitive
also in the IR-range while the retina has been assumed
to be insensitive to the wavelengths used (Chow et al.,
2002; Zrenner et al., 1999). Pardue et al. (2001a) have
reported cortical responses to retinal irradiation from
IREDs in cats. It remains however unclear if the respons-
es were indeed elicited by IR-irradiation or from shorter
wavelengths within the emission spectrum of these high
power IREDs. In our study, we have found a clear retinal
response to IR-laser irradiation proving the cat retina�s
sensitivity to this wavelength of 826 nm. Because laser
light is monochromatic there is no possible confusion
with responses from other wavelengths as with IREDs.
Although careful interpretation is required because
many differences exist between our study and the previ-
ous study concerning the recording site (retinal vs. corti-
cal), the stimulus duration (4 vs. 200 ms), and the
irradiation source (IR-laser vs. IREDs) our result is in
good accordance with the previous findings in that
responses to IR-irradiation were only found in the
dark-adapted state while they disappeared in the light-
adapted state. It confirms the previous study by demon-
strating retinal sensitivity to irradiation of IREDs.

In conclusion, we have shown that there is native sen-
sitivity of the cat retina to IR-irradiation. To our knowl-
edge this is the first description of an unequivocal
response to IR irradiation in the mammalian retina.
From Lamb�s template (Lamb, 1995) minute sensitivity
even in this wavelength region was to be expected and
our responses with features of a standard ERG are evi-
dence that the response stems from the photoreceptor
system. These findings justify great care in the interpre-
tation of results obtained from stimulation of light-sen-
sitive retinal implants with IR-irradiation. However, any
retinal response from IR-irradiation was abolished in
the light-adapted state even in experimental animals
with healthy retinae and with very high stimulus intensi-
ties. It seems therefore safe to propose that selective
stimulation of photodiode-based prosthesis needs to be
performed in the light-adapted state.
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